Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord.

نویسنده

  • Guus Wolswijk
چکیده

Lesions appearing in the CNS of patients in the chronic phase of the inflammatory, demyelinating disease multiple sclerosis often fail to repair, resulting in neurological dysfunction. This failure of remyelination appears, in many cases, to be due not to the destruction of the local oligodendrocyte precursor population, a source for new myelin-forming cells, but to the failure of the precursor cells to proliferate and differentiate, at least in brain lesions. The spinal cord is also a prominent site for lesions in multiple sclerosis, but nothing is known about the fate of the oligodendrocyte precursor population in this area. The present study has therefore analysed spinal cord samples with demyelination from 16 subjects with longstanding multiple sclerosis for the presence of oligodendrocyte precursor cells. Immunolabellings of 10 microm thick sections with the O4/anti-galactocerebroside (GalC) antibody combination, to visualize O4-positive, GalC-negative oligodendrocyte precursor cells, revealed that such cells were prevalent in many spinal cord lesions, with densities of up to 35 cells/mm(2). Six of the spinal cord lesions contained < or =3 O4-positive, GalC-negative cells/mm(2), but such cells were widespread in brain lesions from these multiple sclerosis cases that were available for study (8-26 cells/mm(2)). The density of the O4-positive, GalC-negative oligodendrocyte precursor cells in all spinal cord and brain lesions studied thus far (n = 41) decreased significantly with declining numbers of debris-laden macrophages. In addition, lesions lacking macrophages tended to be derived from the older patients and there was a negative correlation between the density of the oligodendrocyte precursor cells and clinical age of the multiple sclerosis subject at death, and disease duration. The analysis further revealed that lesions from subjects with primary progressive and secondary progressive multiple sclerosis contained, on average, similar numbers of oligodendrocyte precursor cells/mm(2) and that immature oligodendrocytes were only present in significant numbers in lesions with high precursor densities. Taken together, the present data suggest that there is a gradual reduction in the size of the O4-positive, GalC- negative oligodendrocyte precursor population with increasing age of the lesion, that the generation of new oligodendrocytes becomes increasingly more impaired and that lesions are not repopulated to a significant extent by migratory oligodendrocyte precursor cells present in the adjacent unaffected tissue. Hence, strategies intended to promote endogenous remyelination in multiple sclerosis patients should focus on both enhancing the long-term survival of oligodendrocyte precursor cells and on stimulating these cells to proliferate and differentiate into remyelinating oligodendrocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functions of Adult Oligodendrocyte Precursor Cells in Brain Injury and Repair*

Oligodendrocytes populate the nervous system in great numbers, and are vital to the protection of neurons due to their role in myelin production. Previously unrecognized as a unique cell type, oligodendrocyte precursor cells (OPCs) have now been identified via their expression of a specific marker antigen, NG2. In the following discussion, the characteristics of OPCs are elucidated within the c...

متن کامل

Grafted Human iPS Cell-Derived Oligodendrocyte Precursor Cells Contribute to Robust Remyelination of Demyelinated Axons after Spinal Cord Injury

Murine- and human-induced pluripotent stem cell-derived neural stem/progenitor cells (iPSC-NS/PCs) promote functional recovery following transplantation into the injured spinal cord in rodents and primates. Although remyelination of spared demyelinated axons is a critical mechanism in the regeneration of the injured spinal cord, human iPSC-NS/PCs predominantly differentiate into neurons both in...

متن کامل

Class 3 semaphorins influence oligodendrocyte precursor recruitment and remyelination in adult central nervous system.

Oligodendrocyte precursor cells, which persist in the adult central nervous system, are the main source of central nervous system remyelinating cells. In multiple sclerosis, some demyelinated plaques exhibit an oligodendroglial depopulation, raising the hypothesis of impaired oligodendrocyte precursor cell recruitment. Developmental studies identified semaphorins 3A and 3F as repulsive and attr...

متن کامل

Oligodendrocyte survival, loss and birth in lesions of chronic-stage multiple sclerosis.

One of the hallmarks of the human demyelinating disease multiple sclerosis is the inability to compensate adequately for the loss of myelin and of oligodendrocytes, the myelin-forming cells of the CNS. Oligodendrocyte precursor cells, a potential source of oligodendrocytes, have been identified in lesions of chronic multiple sclerosis, but it is not known whether they develop into new, fully di...

متن کامل

The EIIIA domain from astrocyte‐derived fibronectin mediates proliferation of oligodendrocyte progenitor cells following CNS demyelination

Central nervous system remyelination by oligodendrocyte progenitor cells (OPCs) ultimately fails in the majority of multiple sclerosis (MS) lesions. Remyelination benefits from transient expression of factors that promote migration and proliferation of OPCs, which may include fibronectin (Fn). Fn is present in demyelinated lesions in two major forms; plasma Fn (pFn), deposited following blood-b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 125 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2002